
Analysis of à-posteriori error
indicator in viscous flows

D.H. Wu
Sound Advantage LLC, Irvine, USA

I.G. Currie
University of Toronto, Canada

Keywords Adaptive techniques, Acceleration, Error indicators, Navier Stokes equation

Abstract An à-posteriori error indicator for solving viscous incompressible flow problems is
analyzed in this paper. The indicator named “velocity angle error estimator” is based on the spatial
derivative of velocity direction fields and it can detect local flow features, such as vortices and
separation, and resolve flow details precisely. The refinement indicator corresponds to the
antisymmetric part of the deformation-rate-tensor, and it is sensitive to the second derivative of the
velocity angle field. Rationality discussions reveal that the à-posteriori error indicator is a curvature
error indicator, and its value reflects the accuracy of streamline curves. It is also found that the
velocity angle error indicator contains the nonlinear convective term of the Navier–Stokes
equations, and it identifies and computes the direction difference when the convective acceleration
direction and the flow velocity direction have a disparity. Numerical simulation is presented to
illustrate the use of the velocity angle error indicator.

1. Introduction
Adaptive strategies based on à-posteriori error estimation are important in
numerical simulation because they provide effective means of optimizing
numerical solutions, thereby enhancing the scope of their applications (Ewing,
1990; Habashi et al., 1994; Lee and Tsuei, 1992; Oden et al., 1995). Most of the
recent work on adaptive finite element methods using à-posteriori local
projection error estimation has focused on improving the accuracy of the
primary unknowns (Baker, 1997; Fuenmayor et al., 1997), i.e., velocity
components, temperature, etc. However, little work has been done to assess the
accuracy of fluid velocity direction fields and to connect the velocity direction
with flow characteristics.

The error estimation technique (Babuška et al., 1994; Babuška et al., 1994;
Zhu, 1997) provides an assessment of accuracy of the solutions obtained by the
finite element solver. In the adaptive process, meshes are automatically
modified and grid cells are adjusted to match the flow and to capture the details
of flow features. The generation of the velocity angle error indicator is
motivated by observing the fluid flow solution, in which flow features occur as
the velocity angle u varies. By knowing the “true” u gradient fields, a velocity
angle error indicator is constructed to compute the error between the finite
element approximation with the “true” derivative field. As shown in (Wu and
Currie, 1997; Wu and Currie, 2000), the error indicator can efficiently resolve
certain flow features, such as stagnation points, reattachment points, and
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recirculation eddies, where velocity magnitudes are typically small. In this
paper, this à-posteriori error indicator is analyzed from its mathematical
properties, and discussed to reveal its linkage with viscous flow characteristics.

The plan of the paper is as follows. In Section 2 the problem is introduced
and a general discussion of the à-posteriori error indicator eu is presented. In
Section 3, the mathematical properties of the à-posteriori error indicators eu are
described. In addition, the rationale for the velocity angle error indicator is
discussed in this section. Section 4 presents numerical examples illustrating the
adaptive results using the velocity angle error indicator. In Section 5,
conclusions are drawn.

2. À-posteriori adaptive error indicator
The governing equations for viscous incompressible Newtonian fluids involve
the conservation of mass and momentum. The primitive variable form of the
Navier-Stokes equations for steady-state flow in a dimensionless form is:

u ·7u þ 7p 2
1

Re
72u ¼ 0 ð1-aÞ

7 · u ¼ 0 ð1-bÞ

where Re ¼ UL=n is the Reynolds number. In the finite element formulation
the velocities are approximated with quadratic shape functions and the
pressure is approximated with linear shape functions on each adaptive element
(Axelsson and Barker, 1984; Cuvelier et al., 1986). Equation (1) is discretized
from a continuous to a spatially discrete system of equations via Galerkin’s
technique (Girault and Raviart, 1986; Pironneau, 1989).

Based on the piecewise-continuous approximation of the velocity field, the
flow direction or velocity angle is calculated as u ¼ tan21ðv=uÞ at each velocity
node. The velocity angle error estimator is constructed as follows:

eu ¼
XZ

Ve
½ðûx 2 �uxÞ

2 þ ðûy 2 �uyÞ
2� dVe ð2Þ

where u is the flow velocity direction computed from the velocity field, ûx ¼
›u=›x is calculated based on the finite element derivative and has
discontinuous jumps across element interfaces. ūx denotes a recovered
smooth field (smooth ûx to obtain ūx). The continuous ū can be recovered by
simply averaging the values over all the elements around each node, or by
fitting the finite element solution in a least squares sense. The least squares
projection (e.g. ūy) is the following:Z

V

fið �ux 2 ûxÞdV ¼ 0

Z
V

fið �uy 2 ûyÞdV ¼ 0 i ¼ 1; . . .;Nu:
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�ux ¼
XN u

j¼1

fj{ �ux}j
�uy ¼

XNu

j¼1

fj{ �uy}j

Z
V

fifjdV

� �
{ �ux}j ¼

Z
V

fiûxdV

Z
V

fifjdV

� �
{ �uy}j ¼

Z
V

fiûydV ð3Þ

where ū denotes a least squares projection; {ūx}j and {ūy}j denote the nodal values
of the continuousuderivative fields; ûx and ûy are the finite element approximations
ðûx ¼ ›u=›x and ûy ¼ ›u=›yÞ: The details of the implementation of the velocity
angle error estimator can be found in (Wu and Currie, 1997; 2000).

Both the velocity angle error estimator eu and the strain error estimator e1
belong to the projection approach (Zienkiewicz and Zhu, 1987), in which e1, also
called Zienkiewicz and Zhu error estimator, is expressed as

e1 ¼
XZ

Ve
½ð1̂xx 2 �1xxÞ

2 þ ð1̂yy 2 �1yyÞ
2 þ 2ð1̂xy 2 �1xyÞ

2�dVe ð4Þ

where 1̂ is the finite element derivative of velocities. Both eu and e1 hold
quantitative properties and are mesh independent. However, eu and e1 compute
different physical variables and therefore lead to different fluid flow
representations. As seen from the construction of the error estimators, e1
evolves from the u and v components which do not explicitly show the direction
of a velocity vector. At the same time, eu evolves from the v/u ratio which
directly shows fluid flow directions. On the derivative level, e1 compares 1̂
jumps while eu compares q̂ jumps (q represents the derivative of u ). e1 is
equivalent to the symmetric part of the deformation-rate-tensor and it reflects
the rate of dilatation and shearing of a fluid element. eu is equivalent to the
antisymmetric part (Vz) of the deformation-rate-tensor and it reflects the rate of
rotation of the fluid element. It is noted that the v/u ratio is the foundation
component of eu, and it is the ratio v/u (tangent of the velocity vector) which
distinguishes the eu estimator from other error estimators. In the meantime,
besides being a reflection of velocity directions, the v/u ratio also represents the
equation of the streamlines.

As seen from Figure 1, curvature is the rate of change of direction of a curve
at a particular point on that curve and is defined as k ¼ dQ=ds: In the velocity
angle error computation, u is the velocity direction and it is defined as u ¼
tan21ðv=uÞ: It is noted that DQ which is defined in the curvature of a plane
curve coincides with Du in the eu estimator (Figure 1). Thus, us is similar to q
since both variables are the spatial derivatives of the u fields. A curvature error
estimator which is based on comparing ûs and ǔs, or comparing k̂ and ǩ, is seen
to approach the eu estimator if the arc length s is small. Therefore, the
properties of the mathematical quantity k can be used to interpret and
understand the eu estimator. In the finite element computation of viscous flow,
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the velocity angle, u, is calculated at each discretized node; and x and y are the
independent variables since the Eulerian framework is used. This indicates
that the curve in the eu computation is an instantaneous curve, and the
calculated u field represents different particles at the same time, not a
particular particle at different time. Thus, in unsteady cases, the curve in the
velocity angle error calculation is a streamline curve and eu represents the
accuracy of streamlines. For steady cases, the curvature error estimator can
also represent the accuracy of pathlines and streaklines.

Since the streamline is part of results in the computation of viscous
incompressible flows, the connection between the velocity angle error indicator
eu and the streamline is of use in the adaptive grid resolution of flow features.
The finite element computation of a velocity field produces the approximate
streamlines, or the approximate curves. Obviously, these streamline curves
are not accurate due to the initial coarse grid. It is required to have the
most accurate streamlines at an affordable computational cost (less unknowns).
The accurate streamline curves are governed by the curvature of the curve.
The velocity angle error indicator eu calculates the curvature error and
guides the mesh density. As the adaptive levels go further, and the appropriate
regions (high error regions) are identified, the velocity angle error is reduced by
the denser grids in these regions. As the velocity angle error is dropped, the
approximated curves or the approximated streamlines, are close to, or
asymptotic to, the true curves or the true streamlines.

3. Analytical discussions

3.1 ux and uy: Convective acceleration/velocity magnitude2

In Cartesian coordinates, the streamlines can be expressed as y ¼ yðxÞ: The
equation of the streamline is

Figure 1.
The curvature of a plane

curve
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dx

u
¼

dy

v
; or y0 ¼

dy

dx
¼

v

u
:

u is a function of x and y, and along the streamline y is a function of x, then

u ¼ uðx; yÞ ¼ uðx; yðxÞÞ

Differentiating u with respect to x yields,

du

dx
¼

›u

›x
·
dx

dx
þ

›u

›y
·
dy

dx
¼

›u

›x
þ

›u

›y
·
v

u
¼ ux þ uy·

v

u

Note that u also represents the velocity direction, and is the arctangent of the
v/u ratio:

u ¼ uðx; yÞ ¼ tan21 v

u

� �
then,

du

dx
¼

1

1 þ
v

u

� �2
·

d

dx

v

u

� �
¼

u2

u2 þ v2
·

dv

dx
·u 2

du

dx
·v

u2

¼

›v

›x

dx

dx
þ

›v

›y
·
dy

dx

� �
·u 2

›u

›x

dx

dx
þ

›u

›y
·
dy

dx

� �
·v

u2 þ v2

¼

›v

›x
þ

›v

›y
·
v

u

� �
·u 2

›u

›x
þ

›u

›y
·
v

u

� �
·v

u2 þ v2

Here, incompressible flow is considered (7·u¼0),

›u

›x
þ

›v

›y
¼ 0

Then,

du

dx
¼

›v

›x
2

›u

›x
·
v

u

� �
·u 2 2

›v

›y
þ

›u

›y
·
v

u

� �
·v

u2 þ v2
¼

u
›v

›x
þ v

›v

›y
2

v

u
u
›u

›x
þ v

›u

›y

� �
u2 þ v2

Therefore the following relations are reached:

ux ¼
›u

›x
¼

u·
›v

›x
þ v·

›v

›y

u2 þ v2
ð5Þ
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uy ¼
›u

›y
¼

u·
›u

›x
þ v·

›u

›y

u2 þ v2
·ð21Þ ð6Þ

It is noted that the numerator of equation (5) is the convective term in the
y-momentum, the numerator of equation (6) is the convective term in the
x-momentum, and the denominator is the square of the velocity amplitude.
The nonlinear convective acceleration is thus connected with ux and uy, and ux

and uy constitute the velocity angle error estimator eu.
Denote ax, ay, and A as:

ax ¼ u·
›u

›x
þ v·

›u

›y

ay ¼ u·
›v

›x
þ v·

›v

›y

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
Then,

ux ¼
›u

›x
¼

ay

A2
ð7Þ

uy ¼
›u

›y
¼ 2

ax

A2
ð8Þ

It can be seen from Equation (7) and Equation (8) that when the velocity
amplitude (A ) is small and the convective acceleration (ax or ay) is large, uy or ux

is large, and the curvature k is large too. The large variations of ux or uy

generally lead to a large velocity angle error eu, and as a result, bring a dense
grid. This situation usually happens in regions where the fluid flow is slow, but
interesting flow features occur. Equation (7) and Equation (8) explain why the
eu estimator is able to resolve these regions from a mathematical point of view.

When the velocity amplitude (A ) is large and the convective acceleration
(ax or ay) is small, uy or ux is small, and the curvature k is small too (this means
that the curve is not tight). Usually in this kind of situation, variations of ux or
uy are small, the eu error is small and no refinement is needed. This is exactly
what an adaptivity criterion is expected to achieve.

When the velocity amplitude (A ) is fixed, only ax or ay influences uy or
ux. Also it can be said that the results of ux or uy affect the accuracy of ay

or ax. Thus, the velocity angle error estimator ðeu ¼
PR

Ve½ðûx 2 �uxÞ
2þ

ðûy 2 �uyÞ
2�dVeÞ is related to the accuracy of the convective acceleration.

Therefore, as the velocity angle error is reduced by denser grids at the
appropriate regions (using the eu estimator), ax and ay become more accurate.
When ûx is asymptotic to ūx, or the true ux, the calculated value of ay is
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à-posteriori error

indicator

311



asymptotic to the true ay. When ûy is asymptotic to ūy, or the true uy, the
calculated value of ax is asymptotic to the true ax.

3.2 Acceleration direction vs. velocity direction
The convective acceleration is a vector which has components ax and ay, and
direction. The acceleration direction is not necessarily the same direction as the
velocity direction, and the variation of u with s yields acceleration direction as
follows:

u ¼ uðx; yÞ ¼ uðx; yðxÞÞ s ¼ sðx; yÞ ¼ sðx; yðxÞÞ

du

dx
¼

du

ds
·
ds

dx
¼

du

ds
·
›s

›x
·
dx

dx
þ

›s

›y
·
dy

dx

� �
¼

du

ds
·
›s

›x
þ

›s

›y
·
v

u

� �
where

›s

›x
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ ðy0Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p

u

›s

›y
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p

v
Thus,

du

ds
·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p

u
þ

v

u
·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p

v

" #
¼

u
›v

›x
þ v

›v

›y

� �
2

v

u
u
›u

›x
þ v

›u

›y

� �
u2 þ v2

Rearrange the above equation and the following relation is reached:

k ¼
du

ds
¼

u
›v

›x
þ v

›v

›y

� �
2

v

u
u
›u

›x
þ v

›u

›y

� �
1

u
þ

v

u
·
1

v

·
1

ðu2 þ v2Þ
3
2

ð9Þ

Define the symbol L as

L ¼ ðu2 þ v2Þ
3
2·

1

u
þ

v

u
·
1

v

� �

where L can be roughly viewed as the square of the velocity amplitude, or
L<A 2. Since tan u ¼ v=u; and the convective components can also be
expressed as ax and ay, the Equation (9) can be written as:

k ¼
du

ds
¼

ay 2 tan u·ax

L
ð10Þ

Figure 2.
Velocity direction and
acceleration direction
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The direction of the convective acceleration, as shown in Figure 2, is expressed as

tanF ¼
ay

ax
ð11Þ

By using ay ¼ tanF·ax; Equation (10) becomes

k ¼
du

ds
¼

ax

L
ðtanF2 tan uÞ ð12Þ

This indicates that the curvature k increases as ax/L increases. When the
acceleration direction F is different from the velocity direction u, or ðtanF2
tan 2 uÞ – 0; a curve is generated and the curvature (k ) is not zero. The larger
the difference between tanF and tan u, the larger is the curvature k. The larger
the variation of these direction differences, the larger is the value of the velocity
angle error eu. Obviously, when the acceleration direction is the same as the
velocity direction, the curves become straight lines and k ¼ 0:

By using ax ¼ aytanF; Equation (10) becomes

k ¼
du

ds
¼

ay

L
1 2

tan u

tanF

� �
ð13Þ

This indicates that the curvature k increases as ay/L increases. When F is close
to u, or tan F is close to tan u, k becomes smaller. When F is different from u
and jtan 2 u=tan 2F2 1j @ 0; the curvature k becomes larger. When the
variations of k are large, the velocity angle error eu becomes larger and
refinement is conducted in these regions

By using ay ¼ a sinF and ax ¼ a cosF, Equation (10) becomes

k ¼
du

ds
¼

a

L
ðtanF2 tan uÞcosF

This gives a relation between the velocity angle error and the convective
acceleration.

As a result, when the convective acceleration direction (F) and the flow velocity
direction (u ) become disparate, curvature k occurs ðk – 0Þ and some kind of
changes occur in the fluid flow as well. The larger the difference between tanF
and tan u, the larger is the curvature k, and the larger the variation of these
differences, the larger is the value of the velocity angle error. The velocity angle
error estimator eu can identify these regions where two directions have a difference
and it calculates the directional error based on this direction difference.

4. Results and discussion

4.1 Flow over a cavity
The velocity angle error indicator has been benchmarked with the analytic
solution known as Kovasznay flow (Wu, 2000; Wu and Currie, 2000). This
laminar flow which satisfies the steady incompressible Navier-Stokes
equations with no forcing term represents the flow behind a two dimensional

Analysis of
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grid. (Wu, 2000; Wu and Currie, 2000) also contain the validation study for the
case of flow past a backward-facing step.

As an application of the adaptive refinement scheme, the flow over a cavity
is first considered. The computational domain and boundary conditions are
shown in Figure 3, and the width of the cavity is four times of the height of the
cavity. The entrance velocity is specified by a parabolic profile and Neumann
boundary conditions are imposed at the exit.

The adaptive algorithm is applied in the refinement of unstructured meshes
at each adaptive level. Figure 4 shows the adaptive mesh results using the
velocity angle estimator eu with Re ¼ 200: For the same Re case, the meshes

Figure 3.
Schematic of flow
over a cavity (the
computational domain)

Figure 4.
Adaptive refinement of a
coarse grid for flow over
a cavity, using the
velocity angle error
estimator,
eu ¼

PR
Ve ½ðûx 2 �uxÞ

2 þ
ðûy 2 �uyÞ

2�dVe;
Re ¼ 200:
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refined by using the Zienkiewicz and Zhu error estimator eZZ are presented in
Figure 5. It is known that the Zienkiewicz and Zhu error estimator (Zienkiewicz
and Zhu, 1987) is sensitive to high strain areas, and thus, as shown in Figure 5,
adaptive regions as refined using the ZZ estimator are concentrated around the
top two corners of the cavity. Numerical simulation in other Re cases (Re from
10 to 800) confirms that the ZZ estimator fails to detect wakes and reattachment
regions, and more nodes added to the top two corners does not help to capture
the details of those circulation zones. By using eu as an error indicator, those
cells which have significant change of velocity direction with respect to their
neighboring cells are refined. It is known from the simulation that this adaptive
indicator eu focuses more refined nodes on circulation zones and the error is
dilutely distributed on the whole computational domain.

The finite element computation is conducted on the adaptive grids, and
Figure 6 presents streamlines drawn from the velocity approximation for the
Reynolds number ranging from 10 to 800. The center of the recirculation zone
moves towards the left as Re increases, and since refined grids follow well with
the large eddy, the indicator eu is seen to provide a good grid resolution to
resolve flow features. It is noted that as the adaptive scheme goes to deep

Figure 5.
Adaptive refinement of a
coarse grid for flow over

a cavity, using the
Zienkiewicz and Zhu

error estimator,
eZZ ¼

PR
Ve ½ð1̂xx 2

�1xxÞ
2 þ ð1̂yy 2 �1yyÞ

2 þ
2ð1̂xy 2 �1xyÞ

2�dVe;
Re ¼ 200:
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levels, the refinement grid resolves small eddies at the two bottom corners of
the cavity. The strength of the eddies are very weak and the details of each
bubble (e.g. Re ¼ 600) are shown in Figure 7. As known from the numerical
simulations, when Re . 400; the center of the large eddy does not move
significantly. However, the small eddy which is located at the left bottom
corner becomes relatively larger as Re increases. These counter-rotating eddies
which are embedded within the primary circulation zone are consistently
predicted in all simulations.

Figure 6.
Streamlines for flow over
a cavity. Re is ranged
from 10 to 800, the flow
field is solved using the
adaptive grid
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4.2 Flow in a
Q

-shaped pipe
Flow in a

Q
-shaped pipe is also investigated through the adaptive approach.

The initial inlet velocity is specified by a parabolic profile with the average
velocity set to unity and Neumann boundary conditions are imposed at the exit.
A configuration of this flow case is illustrated in Figure 8.

The adaptive grid results and the corresponding streamlines for the flow in
a
Q

-shaped pipe are shown in Figure 9. It is seen that the three vortices, one
large vortex located at the side wall and two corner vortices located at the top
wall, are resolved clearly using the velocity angle error estimator eu. The details
of the three vortices are shown in Figure 10 and the flow is solved at the
adaptive level 6 (the total unknowns are Nt ¼ 2224; for adp ¼ 6). Note that the

Figure 7.
The counter-rotating

eddies which are located
at the left and right

corners of the cavity are
detected; the velocity
vector represent flow

direction only, Re ¼ 600:

Figure 8.
Schematic of flow in aQ

-shaped pipe
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location of the separation points and the reattachment points are resolved
precisely as Figure 10 indicates. Figure 11 shows the finite element simulation
using the Zienkiewicz and Zhu error estimator (Zienkiewicz and Zhu, 1987) and
the adaptive results show that the refinement regions are concentrated around
the two corners of the interior wall.

To be able to detect flow features efficiently and to resolve them precisely
are the requirements of solving viscous incompressible flows. It is seen that the
eu estimator can identify separation points and reattachment points accurately
and use less unknowns. The tests show that, if other estimators are used, at
least 20 times more equations (or unknowns) are needed to reach the same
precise location of these flow features.

Figure 9.
Adaptive refinement of
a coarse grid for flow
in a

Q
-shaped pipe,

using the velocity
angle error estimator,
eu ¼

PR
Ve ½ðûx 2 �uxÞ

2 þ
ðûy 2 �uyÞ

2�dVe;
Re ¼ 100:
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4.3 Flow in a sludge tank
The simulation of flow in a sludge tank is a practical case which has an
application in the car painting industry. In this flow, to detect vortices
efficiently, and more specifically, to resolve the location of the eddies precisely,
is a key concern to an efficient utilization and maintenance of the sludge tank.
A geometric description of this flow case is illustrated in Figure 12. The nozzle
which is located at the top of the wall is the inlet flow, and it tilts 45-degrees
towards the left wall.

Figure 10.
Three vortices are
resolved using the

velocity angle error
estimator eu. (a): The

vortex located at the left
top corner. (b): The

vortex located at the
right top corner. (c): The
flow field. (d): The vortex

located at the interior
side wall. In (a)(b)(d), the

velocity vector has a
uniform length, showing
flow direction. In (c), the

velocity vector is
proportional to velocity

amplitude. Re ¼ 100:
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à-posteriori error

indicator

319



Figure 11.
Adaptive refinement
of a coarse grid using
the Zienkiewicz and
Zhu error estimator,
e1 ¼

PR
Ve ½ð1̂xx 2

�1xxÞ
2 þ ð1̂yyV �1yyÞ

2 þ
2ð1̂xyV �1xyÞ

2�dVe;
Re ¼ 100:

Figure 12.
Schematic of flow in a
sludge tank
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For the Re ¼ 1 case and the Re ¼ 10 case, three vortices, one located at the left
bottom of the tank, one located in the left top corner, and one located at the right
side of the nozzle, are resolved clearly by using the eu estimator (Figure 13). For
the Re ¼ 50 case, the three vortices become larger when the Reynolds number
increases (in comparison with the Re ¼ 10 case), and the left bottom vortex and
the left top vortex begin to touch each other.

For the Re ¼ 100 case, the velocity profiles and streamlines are shown in
Figure 14. As Figure 14 indicates, the vortex located at the right side of the
nozzle continues to grow larger when the Reynolds number increases. When Re

Figure 13.
Flow in a sludge tank,

using eu, Re ¼ 1: (a):
adaptive mesh, (b):

velocity vector in the
computational domain,

the length of velocity
vector is proportional to

velocity amplitude, (c):
the velocity vector has a
uniform length, showing

flow direction only, (d):
the streamlines of the

above vector fields
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reaches 100, the left bottom eddy and the left top eddy join each other to become
one primary vortex. As seen from Figure 14(b), there are counter-rotating
eddies embedded within the left primary circulation zones (located at the
bottom of the tank), and the strength of the eddies is very weak. These small
eddies get weaker as Re decreases, but, through using eu, they are still visible in
the bottom wall corners at deeper levels of adaptive grids.

For the Re ¼ 200 case, an additional primary vortex located near the bottom
wall is found. For the Re ¼ 300 case (Figure 15) and the Re ¼ 400 case, the
vortex located at the right bottom wall becomes larger as Re increases, and the
separation point and the reattachment point move towards the right as well.
There are counter-rotating eddies embedded within the left primary circulation
zone and they are located in the bottom corners of the sludge tank. These
eddies are resolved precisely using the eu estimator.

The adaptive mesh results obtained by using the velocity angle estimator
are summarized in Figure 16 (for Reynolds numbers from 1 to 400). For the
same Re range, Figure 17 presents the corresponding streamlines drawn from
the computed velocity field. It is seen that the eddies in the sludge tank are

Figure 14.
Flow in a sludge tank,
Re ¼ 100: (a): velocity
vector in the
computational domain,
the length of velocity
vector is proportional to
velocity amplitude,
(b): the velocity vector
has a uniform length,
showing flow direction
only, (c) the streamlines
of the above vector fields
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clearly visible and resolved, and flow features are captured in precise details by
employing the eu estimator. It is concluded from numerous tests that the
adaptive grids using eu follow the vortices development and match flow
features with fewer unknowns.

5. Conclusions
The conclusions reached in this paper can be summarized as follows:

First of all, the velocity angle error estimator is a curvature error estimator,
and its value reflects the accuracy of the curvature k. The velocity angle error
estimator is also a streamline error estimator and this is true for both steady
and unsteady flows. Comparing ûs and ǔs or comparing k̂ and ǩ represents the
velocity angle error eu. As the velocity angle error is reduced by using the eu
estimator, approximate curves are asymptotic to the true curves, or the
approximate streamlines are asymptotic to the true streamlines. Thus, the eu

Figure 15.
Flow in a sludge tank,

using eu, Re ¼ 300:
(a): adaptive mesh,

(b): velocity vector in the
computational domain,

the length of velocity
vector is proportional to

velocity amplitude,
(b): the velocity vector
has a uniform length,

showing flow direction
only, (d) the streamlines

of the above vector fields
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estimator can be viewed as an efficient instrument to reduce the curvature
roughness, and as an adaptive indicator, to guide the mesh density to reach a
precise k and precise streamlines.

Secondly, the velocity angle error estimator contains the nonlinear
convective term of the Navier-Stokes equations. When ûx is asymptotic to ūx, or
the true ux, the calculated value of ay is asymptotic to the true value of ay. When

Figure 16.
Adaptive refinement of a
coarse grid for flow in a
sludge tank; Re ranges
from 1 to 400, using
velocity angle error
indicator, eu ¼PR

Ve ½ðûx 2 �uxÞ
2 þ

ðûy 2 �uyÞ
2�dVe:
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ûy is asymptotic to ūy, or the true uy, the calculated ax is asymptotic to the true
value of ax. In other words, as the velocity angle error is reduced by using the eu
estimator, the error on the convective acceleration decreases, and ax and ay

become more accurate.

Figure 17.
Streamlines for flow in a

sludge tank; Re ranges
from 1 to 400
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Thirdly, the velocity angle error estimator represents the difference between
the acceleration direction and the velocity direction. The eu estimator can be
expressed as ðtanF2 tan uÞ convective acceleration/L2). When the convective
acceleration direction, F, and the flow velocity direction, u, become disparate,
the curvature k is not zero, and flow changes occur. More importantly, eu
identifies those regions where two directions have a discrepancy and it
computes the error accordingly. The larger the difference between tan F and
tan u, the greater is the curvature k. Moreover, the larger the variations of the
direction difference, the larger is the value of the eu error, and thus the denser
the grids where two directions have a disparity.

The numerical tests verify that the velocity angle error estimator eu can
detect most flow characteristics and produce dense grids in the appropriate
regions (e.g. the regions where flow velocity directions have abrupt changes).
The refinement grids using eu follow changes of eddies and reattachment
points when the Reynolds number varies. The eZZ fails to detect vortices
and concentrates grids in high strain regions (e.g. the internal corners of theQ

-shaped pipe). The adaptive results justify the applicability of the eu
estimator and prove that this error estimator is a valuable adaptive indicator
for the automatic refinement of unstructured grids.
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